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/ Abstract

A new finite element method is proposed for the numerical

solution of a class of initial-boundary value problems for

first order hyperbolic systewo in one space dimension. An

application of our procedure to a system modeling gas flow

in a pipe is discussed. Asymptotic error estimates are derived

2'in the Lnorm in space.
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1. Introduction.

We propose and analyze a new finite element method for

the numerical solution of a class of initial-boundary value

problems for first order hyperbolic systems in one space dimen-

sion. Our method is based on a proceduregiven by Platzman [9].

A generalization of our procedure for problems in two space

dimensions will be treated in a later paper [8].

We consider problems in one space dimension of the form

u t+(a 12 (x,t)v)X f 1(x,t,,V),

(x,t) e [0,llx[0,TI,

(11 vt+a 2 1i(xtluv)u + a 22 (x,,t,U,V)V x

f f(x~t'u"v), (x,t) e [0,llx(0,T],

u(x,O) u W0 x, v(x0O) v W0 x, x e [,]

v(0,t) g g(t), v(l,t) =gl(t), t e [0,TJ.

we assume that (u(x,t),v(x,t)) is a smooth solution of (1.1).

Let Z'be a compact neighborhood in [0,llx(0,Tlx]Rx]R of the

set

f (x,t, u(x,t) , v(x,t) ) j(x,t) e (0,1] x (,T] I

and assume that there exists a positive constant, a~, such that

(1.2) a 12 (x,t) a , a 21(xft,s11 S 2) > a



-2-

for all (x,t,S1 ,S2) e Z. We assume also that ai] (xt'sl's2)

and fi(x,t,SlS 2) are Lipschitz continuous functions of their

arguments for (x,t,sls 2) e 4t.

Initial-boundary value problems of the form (1.1) occur,

for example, by scaling the space variable, x, of the following

first-order system modeling the transient behavior of isothermal

gas flowing in a pipe:

Pt + Gx = 0, (x,t) e [0,L]x[O,T],

Gt + (a2 - G2 p- 2 )Px + 2Gp'Gx

(1.3) -- fjGjGp - , (x,t) e [0,L]x[0,T],

p(x,O) = po(x), G(x,O) Go(X), x e (O,L],

G(0,t) = g 0 (t), G(L,t) = gW(t), t e [0,T],

where p is mass density, G is momentum density (averaged

through the pipe cross-section), a o(p) is the isothermal

speed of sound, L is pipe length, and f = f(JG I) > 0 is a

friction factor. We assume that the friction factor is described

by the Moody diagram (see (12, p. 288-289]). In this case there

exist positive constants Gc and f0 such that f(IGI) - f0 1G-i

for IGI < Gc. There also exists a positive constant f,

such that

lim f(IGI) = f 1
IG I -m

The boundary conditions above correspond to supplying the mass

rate of flow at x = 0,L. Conditions on the data and the friction



-3-

factor guaranteeing the existence of global smooth solutions

to (1.3) have been given by the author in [7].

We now describe the finite element spaces used for our

procedure for (1.1). Set I - [0,1] and for E C I define

Pk(E) = {z: I - IR ZIE is a polynomial of degree < k}

For the partition 6 = {0 - x0 < x1 < ... < xN = 1} we define

I i = Ex ilxi], h. = xi -xi- , and h = max hi . Set

(1.4) *k(r,6) - {z e Ck(I) z e Pr(XI i = 1,2,...,N}

We shall often write t for 7 1k(r,6). We also set

d =d dzd d zk(r,6) I z e k(r, 6)}

We shall assume that the families of spaces f)k(r, 6) con-

sidered in this paper are based on meshes 6 that are quasi-

uniform, i.e., there exists C1 > 0 independent of h such

Ithat
h.(1.5) mai - C

2If f,g e L2 (I), denote

<f,g:> j fg dx
10

We propose the following method to approximate (1.1):

t7
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Find U: (0,T] * ?t V: [0,T] *d such that (sup-

pressing explicit dependence on x,t)

<Uto'X)- <a 12 V'x";7 I a 12(l"t)gl(t)X(l)
(1.6a)

- a 1 2 (O,t)g0 (t)x(O) u<f1 (tiV),X)' X e )

(vt + a 21 (U,V)U x+ a 22(UV)V, X >

+ a [V (1,t) - g1 (t)I x(l)

(1.6b) + aI (0, t) - go MtI x(0)

=<f (U, V) , X> ,X e A'

U(O) u0, V(O) z v 0

The terms multiplied by the constant 5in (1.6b) repre-

sent penalty terms to impose the boundary conditions. Let

(1.7) y=max ja22 (xltlu(xlt), v(x~t))1
(x,t)e[0o,l] x [0,T]

We show that the scheme (1.6) is convergent if 5>y/2. If

a22 E 0, it follows that the scheme (1.6) is convergent for

$ 0. We must also require that W? C (Ii.e., k > 1,

if a 22 0' 0. otherwise the term

will not be defined.

-. - - .. V..s..a.~A~b.tbku .... 'n,, a ..... a.~.tAWL
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We denote by H3, for j a positive integer, the Sobolev

space of functions on I with j derivatives in L 2(1) and

norm

* I~zII - ~ I dkz d kz dJzl2 2 jzI
dx0

We shall prove the following theorem in Section 5:

Theorem 1. Let (u,v) be the solution to (1.1) and assume

that there exists C2 < a such that

sup (IIuIIr + IIvll ) < C2
O<t<T

S 2 + 2] dt < C2

Assume that U(0) e ', V(O) e d satisfy, for some C <

(1.8) IIU(o) - u011 + IIV(o) - voll _ C3hr

Suppose that 8>y/ 2 , that k > 1 if a22 X 0, and that r > 2

if the system (1.1) is nonlinear. Then there exists h0 > 0 and

C such that the solution (U,V) of (1.6) exists on [0,T] for

h < h0  and such that

(1.9) tIU(t)-ult)jI + IlV(t)-v(t)II < Chr for t e [0,T], h < h
t0
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We note that the estimate (1.9) is of optimal order for

v. It has not yet been determined whether the order of this

estimate for the approximation of u can be improved in

general. The optimality of the result (1.9) is discussed in

more detail in Section 5.

Our procedure should be compared to the standard finite

element procedure [21, to be discussed in Section 2, for approxi-

mating the solution of first-order hyperbolic systems. Although

high convergence rates can be proven for both the standard finite

element procedure and our alternative procedure, there are

important qualitative differences in the solutions they produce.

It is shown in Section 2, that the numerical solution produced

by the standard finite element procedure has dispersion proper-

ties unlike those of the exact solution of the differential

equations. This behavior has been noted by, among others,

Hedstrom [51 and Platzman [9]. We show in Section 2 that

for a model problem which is a linearization of (1.3) our

proposed procedure yields a solution with dispersion properties

similar to those of the solution of the differential equations.

In Section 3 we discuss the qualitative nature of the

solution of (1.3). We show that for short pipes (L small) or

rough disturbances the dissipative term -fG(Gp-l is rela-

tively unimportant and the solution to (1.3) is approximated by

the solution to a wave equation. However, for long pipes and

mild disturbances the dissipative term -fjGIGp -I  is shown to

be very important and the solution to (1.3) is approximated by
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the solution to a diffusion equation. Our numerical solution

is shown to be close to that of the solution of the standard

finite element method for the wave equation or the diffusion

equation under the appropriate conditions.

Section 4 gives a result which indicates that accurate long-

time integration of systems such as (1.3) is possible with our

procedure. We note that accurate long-time integration of (1.3)

is not possible with the standard finite element method due to

the accumulation of round-off and truncation error.

I

)

. ,..



2. Dispersion analysis of an example.

Consider the hyperbolic system

ut + v = 0, (x,t) e [0,1]x[0,T],

vt + Ux = 0, (x,t) e [0,1]x[0,T],
(2.1)

v(0,t) - v(l,t) - 0, t e (0,T],

u(x,0) - u0(x), v(x,0) = v0(x), x e [0,1].

The solution to (2.1) is easily constructed through Fourier

analysis. If

u0 (x) an cos nwx, v0(x) = bn sin nwx,

then

u(x,t) = A cos(n7rt+e)cos nvx ,
0nn

v(x,t) = G An sin (nrt +n )sin nrx ,

where A = a0 , e0 = 0, An cos n = an' An sin n = bn

Now consider two approximation procedures for (2.1). Let

HI fz e H1 ( z(O) = Z(1) }

0= '?k(r, 6) ) H0

and define the standard finite element approximation (21 to be

the functions U : [0,T] 7 1, V : [0,T] * 70 such that
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<Ut,w> + <v,w> - o, w e

(2.2) <vtw> + <uxW> - 0, w e ,

U(O) I U0 , V(0) v0 *

It is instructive to study an explicit solution of (2.2)

in the case k - 0, r - 1, and 6 is a uniform partition.

For N a positive integer, set h - N and x ib,
N 3.

i = 0,...,N. Define the interpolation operator C(I) * 7-

'Mo(I ,6) by the relations

&z(x i ) = z(xi) for i = 0,...,N.

If

N
U(0) = ; an 6(cos nnx)

0

N
V(0) = hn 6) (sin nirx)

;t 1

then

N
U(t) = A cos(rnt+ E) (cos nTx)

0 n n

(2.3)
N

V(t) = A sin(rnt + 8n )6@(sin n Tx)-,1 n '

wnere A = a0 , An Cos e n =a n ' An sin e = bn , for

n = 1,...,N, and
4',
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3 sin nhir
(2.4) rn h(2 +cos nhr)

Note that rN = 0. Thus, we see that

U(t) = (9(cos Nrx), V(t) - 6)(sin Nrx) = 0

is a non-constant steady state solution to (2.2). Furthermore,

we see from Graph # 1 that the most spatially oscillatory com-

ponents of the solution of (2.2) have a low frequency in time

even though the spatially oscillatory components of the solution

of (2.1) have high frequency in time.

We can also see this phenomena for (2.2) and general spaces

S= 'Mk(r,6) as follows. Since

d 0

there exists a non-constant e W7 such that

(2.5) <XX, 2> = -<X, x> = 0, X e 0

Hence

(2.6) U(t) = , V(t) = 0

is a non-constant steady state solution of (2.2). We note by

(2.5) that 2 must be a highly spatially oscillatory function.

Our new procedure to solve (2.1) is the following. Find

I '"_
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U (,T] =  k(r,6), V [,T] such that

<Ut'w>  - <,w> = 0, We

(2.7) <vow> + <uw> 0, we

U(0) 2 u0  V(O) v 0

We note that by elimination of V in (2.7) we see that U

satisfies

<U tw>+ <u'wx> 0 , w e ~?

Hence, our procedure reduces in this special case to the standard

method for the wave equation.

An explicit solution to (2.7) can be constructed as follows.

Let X k be the kth  positive Rayleigh-Ritz approximate eigen-

value with eigenfunction Uk e ?? for the problem

-u= Xu, x e [0,l,

(2.8)

u'(O) = u'(l) = 0.

Thus, 0 < A < A2 < ".. <XM and

kUk'W> = <U ,
x

where M dim 74 -1. Let wk = Ik " Also, set wo 0

and U0 = 1. If

,L'"
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M
U(O) - I ak Uk

0
M

V(0) = bk(--k I Uk)x

then

U(t) = Ak cos(wkt+ek)Uk,
0
M

V(t) - A k sin (wkt +ek) (-wk I Uk) x

where A 0 =a O , 60  or A, k Cos k = a k , Ak sin ek -- bk-

It is well known [11, P-223] that wk > k 7r for k =i . M

Hence, we do not obtain non-constant steady states for (2.7),

and states which are spatially oscillatory have high frequency

in time.

In the case = 0(1,S) where 6 is a uniform mesh

of size 1 , N a positive integer, we can take

Uk = 6(cos kwx)

and

9=2 -sin 2 kth)-1/2 h-1(2.9) k 2 3 2

A comparison of the graph of wk and rk with the graph of

Vk = kw (see Graph #1) shows the superior dispersion relation

given by scheme (2.7). Intuitively, the graph shows that only

about one-half of the degrees of freedom in the standard method

are useful in approximating the solution , whereas for the pro-

posed method all of the degrees of freedom are useful.

- ., '
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3. Application to the modeling of gas flow in a pipe.

For high frequency disturbances solutions of equation

(1.3) behave very much like solutions of the usual second-

order wave equation and for low frequency disturbances they

behave very much like solutions of a heat equation. In this

section we indicate the sense in which this is true for a

linearized version of (1.3) and examine the behavior of our

numerical method in these two limiting situations.

If we linearize (1.3) about constant mass density P > 0

and momentum density G = 0, we obtain the system (after scaling

the length)

(3.1) Pt + L-1 Gx 0 , (x,t) e [0,l]x[O,T] ,

(3.2) Gt + L'Ia2Px = -fG,

(3.3) p(x,0) = P0 (x), G(x,0) = G0 (x), x L (0,1],

for positive constants L, a , and f where L is pipe length,

a = G(p) is the isothermal speed of sound, and is a constant

friction factor. We consider for simplicity the case of homo-

geneous boundary conditions

(3.4) G(0,t) = G(l,t) = 0, t e [0,T].

We obtain by eliminating the variable G from (3.1)-(3.2)

the damped wave equation

"_. .
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Ptt C 22p P= -1pt ' (x,t) e [0,1]x[O,T],

(3.5) p(x,0) -P 0 (x), Pt(x,0) -- L 1G0 xX), x e [0,i],

PX(0,t) = PX(1,t) - 0, t e [0,T].

Now suppose that the initial data is such that for m a

positive integer

(3.5a) p(x,0) = am cos(mnx), Pt(xo) = am cos(mrx).

Then it is easily checked that the solution to (3.5) is given by

(3.6) p(x,t) = + e + c eYmt cos(mix)

where

S= _- + _ 4m2 2 L- 2 a 2 j-21,

m m +

+

If ym = Ym for some m, then small modifications of the

following arguments are necessary. Let

+ +

P(x,t) cm e cos(mrx),

- Ymt
P2 (x,t) cm e cos(mlrx).

Note that P =Pl + P 2 .



we first consider the case when

(3.7) m21 2  2 2̂ --2 1

A simple calculation shows that under the condition (3.7)

we have that

fpiI < IL-2 2
(.)t Pixx 1,IittI27 xt [~l[,] IpH i - ,2 ;(orfunctio8ns

if and only if 101/1*1 << 1 for (xt) e (01]jx(0,Tj)- Hence,

it follows that the solution to (3.5) is approximated by the

solution to the wave equation

Pt- L a p xx M 0 (xt) e [0,t]KIQ,Tj,

'3 (O't) p (l,t) -0, t e (0,T],

p(X,O) a ~m Cos(myr X) , Pt(xiO) = M cos(m~x) , x e [,]

Next, we consider the case when

(3.10) m w2 L ~ f- << 1, 1 BMI« I am f

Then it is easily verified that

(3.11) 1p 2ttl < IL 2 1, IfP2I ,for (x,t) e [0,llx[0,T].

*1.t
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It also follows from (3.10) that

o+( << IoFI
so that

iI' I, p1 I, IL- 2  I<< IL 2e2p I If02 1
ip tt f 1 t 1, I - l xx I < I - P2 xxl p

(3.12)

for (x,t) 6 [0,l]x[0,T].

Hence, we see from (3.11) and (3.12) that under the conditions

(3.10) we have that the solution of (3.5) is approximated by

the solution of the diffusion equation

-L-22 xx =-fr ' (x,t) e [O,l]x[O,T],

(3.13) x(0,t) = x(l,t) = 0, t e [0,T],

p(x,0) = m cos(mwx), x e [0,1].

We shall now show that under the conditions (3.7) our

numerical solution to (3.1)-(3.3) is close to the standard

finite element method for the wave equation (3.9) and that under

the conditions (3.10)our numerical solution to (3.1)-(3.3) is close to

the standard finite element method for the diffusion equation

(3.13).

Our finite element solution to (3.1)-(3.3) is p: [0,T] . ',
dG: [0,TJ . such that

(3.14a) Pt,X>- <L-IG, Xx> = 0, X e ' ,

* * .• .. . * . . ... ., ., .. . . . ... .., . . . . . . .. .-
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(3.14b) <Gt + <L 2 xX> - o,, x e

(3. 14c) P (0) P0' G (0) GO 0

We can eliminate G from (3.14) to obtain the following

finite element equation for p : (0,T] 77t

(3.15) K<t2> +f

<Pt I > aP' XX> -KePt, X> x e f

where p(0) is as in (3.14c) and pt( e e satisfies by (3.14a)

(3.16) <pt(O) ,x> = <L- G(O), Xx> x e m .

As in our discussion of the differential problem, we assume that

p(O) = amUm, Pt (0 ) = amUm

(we use here the notation for the eigenproblem (2.8) introduced

in Chapter 2). The solution to (3.15) is then given by

(3.17) p(t) = [ C m t e + c- e ]mt Um

where

r[1 1 4X L ~f2]

..

+ 8m -rm am

rm Fm
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An analysis similar to that given for the differential

problem then establishes that if

(3.18) X L-.2 -2 f

we have that the solution to (3.15) is approximated by the

solution p: [0,T] ' to be standard finite element approxi-

mation for the wave equation

(3.19) <Ptx> + <L2 P2  , Xx> = 0, X e 7.

Similarly, if
L-2 ^2 ?-2 <<1

(3.20) Xm L ?2 1, Ieml « I<<m I

it can be verified that the solution to (3.15) is approximated

by the solution p: [0,T] of the standard finite element

approximation for the diffusion equation

IA (.1-2 P X, Xx> - -f <Pt, x> , x e
~( 3.21)

P(O) = c mUm

m

.

* ... e .
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4. Lonq-time integration.

We shall prove the following result:

Lemma 1. Let (p,G) be the solution to the continuous problem

(3.1)-(3.4). There exists positive constants C and D

(depending on 0, L, and f, but independent of T, p0, GO)

such that

1
11 (t) - f0 Po dxl + I G(t) ii

(4.1)

a -D (IIQ ~ dxli + JIG01
<_ e't( I o - fo Do d l * Ioi)

Also, if p: (0,T] * 77, G: (0,T] u is the numerical

approximation of (3.1)-(3.4) defined by (3.14), then

Ilp(t) - op(O)dxli + IIG(t) II

(4.2)

< ce lip(0) - p(O)dxll + IG(O)II ).

' .. * e..."4 , *eo teP
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Remark.

This result implies that the dependence of the solution p, G

of (3.1)-(3.4) at t. > to on po" G,, and the boundary

conditions for t e [O,t 0] decays exponentially (except for
1

the dependence on J0 P(x't0 )dx, of course). It is essential

that a numerical procedure for (3.1)-(3.4) have the property

(4.2) if the accumulation of round-off error and truncation

error is to be prevented from destroying the accuracy of the

numerical solution after a finite interval of time.

Proof of Lemma 1.

We shall prove the estimate (4.2) for the numerical solution

given by (3.14). The proof that (4.1) holds for the differential

problem is analogous. Suppose that the solution p(t) -

c (tUm e 7 to (3.14) has initial conditions

MM

p(O) a 0 M X t(0) U M
0

We assume in this section that the eigenfunctions (U m } have been

normalized. Again, if y + Y7 for some m, then small modificationsm M

of the following arguments are necessary.

It follows from (3.17) that

wi -6
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+ rt+ t r"t
cM(t) = [C e + ce ]

By the orthonormality of the set {UM} we have that

1 M 2
(4.3 p(t) - P(O)dx2 C M (t)

It follows from (3.14a) that

M
(4.4) G(t) = rc(t) L m Um

x

so

(4.5) 2 2 2 21MM14. iIG(t1)12 -7 c 1t1) L Am
1

It is easily checked that there exists a positive constant

C which is independent of m and 6 such that

(4.6) +I2 + I-12 < c[ 2 + L 2X-

2

We also note that since Am A. > ir for all partitions 6 and

for m = 1,...,M it follows that

(4.7) Re rm  <r Re 1 - 4 2 2 L-2 fE D

for m =

Hence, we have that

c21t < 2e-2Dt 2 -2

(4.8)
Ce-2Dt 2 + L 2- 1

< .C e M n L Am ,

*0'
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Since c m(0) = am  and cm(0) = m , it follows from (4.3) and

(4.5) that

M 2 1: :2 M m2 1(4.9) f lm  iP (0) f p(0)dxll 2 L2 X m I:G (0) 12

Thus, if we sum (4.8) for m - 1,...,M we obtain

(4.10) lp (t) -o p(0)dx 112  C_ e-2Dt( ip(o)- fop (0dxl + IG (0)

Next, it is easy to show that there exists a positive con-

stant C which is independent of m and 6 such that

M + + rmt r~t22 1

E (c rm e + cmr m 2 L2 XM

(4.12) 1 _

SCe 112 112).D+ -(I It p (0 ) - f1o Odx 1 ~IG(O) H2

standard finite element solution to (3.1)-(3.4). The standard fi-
nite element solution to(3.1)-(3.4) is obtained from (2.2) by
replacing U with p and V with G and by adding -f (G,W>

to the right side of the second equation. Since (see (2.5))

M~
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is a non-constant steady state solution it is clear that (4.2)

cannot be verified for the standard finite element method.

.. *~@ @ 0 **0 *~ . 0%O e*.
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5. Proof of Theorem 1.

We shall fix r > k > I and derive optimal order error

estimates for the scheme (1.6) for the family of spaces

satisfying the quasi-uniformity assumption (1.5). We note in

the statement of Theorem 1 that we may allow k = 0 if a22 0

and r = 1 if (1.1) is linear. These special cases can be proven

by a variant of the following argument.

In what folllows we denote by Wj '  the Sobolev space of

functions with j weak derivatives in Lw(I) and norm

=kj 0 =z (I , I-I = Izlo-

It is well-known that there exists C4 < C , depending only

on C1 of (1.5) and r, such that the following inverse hypo-

thesis holds for x e 7%

h l/2 xI + h IIxll .. C 4  1Ix I

(5.1)
hl1/2 IXx + h IlXxxl < C4  1Ix.11

It is also well-known that the spacesi satisfy the

following approximation property:

There exists C5 < ®such that for 2 < s < r + 1 and

SZH s
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inf (Iz-x IX + h liz -×liX + h2 1z-X112
(5.2)

(5.2/ Iz-xii) < C5 hs  IIzIIs

and for 1 < s < r and z e H s ,

(5.3) inf (il=-xl1 + hl -xll +h1/21z-xl ) < < 5h s 11zl s
x e 

1

We also use the fact that there exists C6 < so that if z e H2

and z x(0) = z x(1) = 0 , then we can choose X e 771 such

that Xx(O) = Xx(1) = 0 and

(5.4) liz -xJl + h llx 112 - C6h llzl 2

In what follows, C will denote a constant which depends
on the Lipschitz constants for aij and fi ct, and C1  through

C6, but which is independent of 6 It will be allowed to vary

from estimate to estimate. When the arguments for ai fi

are omitted we assume that the functions are evaluated at

(x,t,u(x,t), v(x,t)).

We wish to define the weighted L2 projection of v,

R = R(v) e f , by relations

(5.5) <al2 (v - R(v)),17> = 0, W e d 74

It follows by the approximation property (5.3) and (1.2) that

n2 = v - R(v) satisfies

Ul-
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(5.6) 11 n211 <C IlvIlh hr

It then follows by the approximation property (5.3) and the

inverse hypothesi.s (5.1) that

(5.7) hIlri2Ili + h 1 2 In21 I Ch IIvIIr

We obtain an estimate for n~2 tby differentiating (5.5). We

then obtain

(581a 2 %l W W) + <(ta12 ) T)2 ' W> = 0, d

it follows that

11 n2 II C Pf211 + C if d - XlI
(5.9) Xea-X

<Ckr ( IIvllr + Ilvtllr).

As before, by (5.3) and (5.1) we can then obtain

(5.10) +h~h il 2 Ill +121 hCI(IIvIIr+ llvtIr)-
t t

We also wish to define the following approximation of u,

Q o (u,v) e 7~,by the relations

<a (u (u, v)) J, <a > + <I

(5.11) + an2(1,t)Xx (1) + Sri2 (0,t)xX (0) 0, X e 7j

(u- Q(u,v))dx -0
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Set n, u - Q(u,v). It follows from (5.1) and (5.7) that

2(It)Xx ( I ) i < Chril XxI Ilvil r x e 7n

(5.12)

In2(°,t)Xx(°)l .5- Chr- 11X,1l 1lvllr X e

Hence, it follows that

1111111 <S C1l n 211 x + Chr- 11 vr + C inf 1u -X11 1
(5.13)

< Chr-  ( lV11r + 11ullr).

22
We can derive an L2 estimate for nl by a variant of a

1

frequently used duality argument. Let f e L2(t),o f dx =0,

and determine 0 by

-(a210x ) x = f, x L [0,1],

()= (1) = 0,

0 dx = 0.

Note that

o = - 1 f f(s)ds.x a21 J0
Then it follows that

110112  C 11 fl •

Also, for X e , such that Xx(0) = x(1) = 0, by (5.11)
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<i, f> "lw,- (a 2 ,x)x) = <a2llx' Ox>

x x

I+<rn2 , (a 220x)x>•

Now if we choose X to approximate 0 as in (5.4) so that

0I -Xll Ch I 11

it follows that

(5.15) I<nl,f>l < C [h llnjll 1  + hil n2111 + Il12I1] lIlfll

Hence, since
1O TIdx 0,

we can conclude that

(5.16) 1ll I  < Chr llullr + IvlIrI

We can derive an estimate for ni by differentiating (5.11)
t

with respect to t to obtain as in the estimate for hInllIl ,

' (5.17) 1  -lr< Chr( hu + llutll + IIvII + hlvthlI)"

A duality argument similar to the previous such argument establishes

that

1.

V

' 4.
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(5.18) llri n, t Ch"' C (ulr + '1v"1r + IIut1l r + iIvtIlr

Set 91aU-Q(ulv), 1 2 0 V-R(v). Then from (1.1), (1.6a)

and (5.5) we see that

t >- <a 12 2, Xx>

O~nt"x> + <f1 (U,V) - f1 (u,v), x' e

It also follows from (1. 1) , (1. 6b) , and (5. 11) that

+ a21 (u,v) , + a22 uv~&2t 21x 2(') x '

+ 8&2 (1gt) X(l) + BE2(O't) X(0)

(5.20) 462t <[a 21 (u,v) - a 21(U, V)I U xX >

+ <[a22 (u,v) - a22(U.V)IV X, >

+ < 2(UV)- f 2 (u,V) , x) e

We prove the theorem by a variant of an argument used

in [2,6,10,131 by showing that there exists a Positive constant

C7 such that for any t C (0,T], if
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(5.21) (U,V) exists on (0,t]

such that

((x,s, U(xs), v(x,s)) I (xs) e (0,1] x (0,t} o,

and

I(u- U)x(S)1 + I(v- V)X(S)l )< for 0 <_ t,

then

(5.22) I(u - )(s) I + 11 (v - V)(s)II C C7  , 0 s < t.

Let 8 be a compact neighborhood of

((x,s, u(x,s), v(x,s)) I (x,s) e [0,1] x [0,T}

such that e _. interior of 6t

It follows from the "inverse" hypothesis (5.1) that (5,22)

implies the existence of a positive constant C so that

, r

(u - U) (s)} + I (v - V) (s)J <Ch- , 0 < s t

* Hence, there exists a positive constant hI such that if

h e (0, h1 ], then (5.22) guarantees that

A ((x,s, rU(x,s), V(x,s)) (x,s) e [0,1]X0,t]1 } 6'

# .. ...-
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Similarly, it follows from the "inverse" hypothesis (5.1)

that (5.22) implies the existence of a positive constant C

such that

I(u - U) x(S)I + I(v - V) x(s)I < Ch 2, 0 < s < t.

Hence, since r > 2 there exists a positive constant h2 such

that if h e (0, h 2 ], then (5.22) guarantees that

I(u - U) (S)j + I(v- V)x(8)1 1 1 for 0 <s < t.

Now U(x,t), V(x,t), i(u - U)x (t)I, and I(v-V) x(t)I

are continuous functions of t. Also, by the assumption (1.8)

on the choice of U(x,0), V(x,3) and the above discussion

it follows that for h < min(hl,h2) we have (assuming without

loss of generality that C7 < C3)

{(x,o, u(x,0), v(x,0)) x e ii <. ,

and

I (u - U) (0)1 + I(v - (0) 1

Suppose we have proven that (5.21) implies (5.22). We can

thus conclude from the existence theory for ordinary differ-

ential equations that if h <h0 min( hl, h2) , then (U,V)

exists on [0,T],

{(x,s, U(x,s), V(x,s))I (x,s) e (0,1] x [0,T]} 6

I(U- U) (s)I + I (v- V)(S) < , 0 < s < T

x x 2
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and

I(u- U) (s)I + I(v - V) (S)I C C7h r 0<sa < T.

So, we assume that (5.21) is valid. We

shall proceed to prove the estimate (5.22). Since

{(x's, U(x's) , V(x"s)) I (x,s) e (0,1] x 10,t] C

we can assume (1.2) and the Lipschitz bounds on the coefficients

where needed. We also note that it follows from (5.21) and

Sobolev's inequality that

IU x(s)I +1 IV x(s)j ~ I< u x(s)! + IV x(s) I + 1

(523 u C{ (s)11 2 + Iv(s)1 2} + 1 < C C2 + 1

for 0 <s <t.
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-2 a.,we set R- e " to be the L proection of .

onto , i.e.,

a 21

We use the following variant of a lemma of Dupont and Wahlbin
a

[4] to estimate the error - 21i"~

Lemma 2. There is a constant C such that if b is a continuously

differentiable function on [0,1], * e , and p is the L2

projection of b. onto m then

11 (b - x ll C-. C b x l 11 1 -

Proof of Lemma. For x e , we have by (5.1)

I (bo - SI) ll II (bo - x).l + II (x "

(5.25) < (b, - x)l + l -lIx - *ll i
I (bo - ×), I + Ch 'i(11 b - x if + llb, - pll i.

I-
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It follows directly from [4] that

libo - *11 <__ Ch lbxl I 11011

The argument in [4] also shows that one can construct X e r~i(r,6)

such that

libo - xll + h 11 (bo - x)xll s- Chlbxj I1011

The result follows by substituting the above two estimates in

(5.25). Q.E.D.

We apply the lemma to obtain

(5.26) I (a~1 ), - (a21  x'1 I < c I(a])xlI 1
(526x a12 x -- a12

We note that from (1.2) it follows that there exists a constant

C > 1 such that

12

We now take x = a e M as our test function in (5.19).

" We obtain since e that
t

a 21

tt 12

Also,

- :
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:j a 211 d a< t  a12 t a12

(5.27)

2S 1  dt a12

and by (5.26)

<a1 2, x>( a2l l x>
a

<a122' Ta 12x'~ (12L~

(5.28)
+ o( U2112 + U 1112

= <a 2 1 9 2 ,F1 x> + O( 1€211 2 + U& 'ii2

Hence, we can obtain from (5.19), (5.27) and (5.6), (5.16),

and (5.18) that

1 aj2- > - <a212'Ix >

(5.29)

< C I 1 2 + &21 + Ch2 r

If we set X = 2 e d ' in (5.20) and use (5.6), (5.9), (5.16)

and (5.23) we obtain

+ <a 2 1 ix, 2> + <a 2 2 2 x, 2>

x P

(5.30) + 4-2( Is) + " 2(0 s )

Ch2r + C [ 11& 1 2 + II211 2 2 .
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However,

(5.1) <a2  2i > 1 (a2 ) xdx- !<(a 2 2 ~~'2

1 U('(ls) 2 2(O's) 2 I~I

Thus, if we add (5.29) to (5. 30) and use (5.31) we obtain

1d a 21  2 2 2

(5.32)

_: 1 1 2 +11 2 11 2] + h2r

We now obtain from Gronwall's lemma the result

(5.33) jl (s)fl + 21 2 (s) -T) J[ 1 2(" cy) +~( 22do

< Ch 2r for 0 < s < t.

Since it follows from (5.6) and (5.16) that

n,24+ nf21 2 Ch2r

we have shown that

* Iu-U) (s)I + I(v-V) s)f <Cr ,0~ <s < t.

Thus, we have shown that (5.21) implies (5.22). Hence, we can

conclude (as our theorem asserts) that there exists h 0> 0

such that if 0 < h < ho then (U,V) exist on (0,T] and
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r!
(5.34) 1I (u-U) (t) 1I + ll(v-V) (t)i 5_ Chr for 0 < t < T.

Q.E.D.

We also note that the following estimate is valid [I]:

(5.35) 1n2 1 < Chr IV(,

We can use this estimate to conclude from (5.33) the following

corollary.

Corollary 1. If in addition to the conditions of Theorem 1

we have that

( 2 dt < o(.36) l IV lr

and >  , then the estimate

(5.37) [jv(lt) - V(l,t)12 + jv(0,t) - V(Ot) 2]t < Ch2r

is valid.

We now consider the optimality of the estimate (1.9).

First, we consider the problem

ut + vx = 0, (x,t) e [0,1]x[0,T]

Vt + Ux = -IV,

(5. 38) v(0,t) = g0 (t) , v(lt) = gl(t), t e [0,T] ,

u(x,O) m uo(X), v(x,O) = Vo(X), x e (0,i] ,
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where f is a constant. The next lemma shows that if the

solution (u,v) to (5.38) is smooth enough and if

llu0  - U(0)II <

(5.39)

dx

then the improved estimate

(5.40) h-l 11u(t) - U(t) II + Iv ( t ) - V(t)II < Ch', t e [0,T],

can be obtained. We note that the estimate (5.40) is of optimal

order in h for both u and v.

Lemma 3. Let (u,v) be the solution to (5.38) and assume

that there exists C8 such that

sup ( IIUr+l + Ilvlr < C8

T
fo 11ut I Ir+l at <_ C8 •

Let (U,V) be the solution to (1.6) with a 1, f 0,

a21 S 1, a2 2 E 0, f2 (u,v) - -fv, 8 = 0, k > 0, and r > 1.

Assume that (U(O), V(0)) satisfies (5.39). Then the estimate

(5.40) is valid.

Proof. It is easily checked that (using the notation of Theorem 1)
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(5.41) El X)0 <E2' X.> nfl 1 IX > X

and

'2tX>+<lX> f(C2 ' x0' X e a
We set X - E in (5.41), X E 2 in (5.42), and add the

resulting equations to obtain

1id IE122

(5.43)
1 n,12 + 111 Ell, 2 + fj 1K11 2

tIn 2 IIIE

Now it follows from standard estimates that in this case

(5.44)

Also, we can conclude from (5.39) and (5.44) that

(5.45) IK1j(o;I1 <i Ch r+l p 2 (0) -=0.

Hence, it follows from (5.43), (5.44), and (5.45) and Gronwall's

inequality that

(5.46) 1K1,(t) 112 + 1&2 (t) 112 < Ch ,(~l t e (0,T].

The result (5.40) now follows from (5.44) and (5.46). Q.E.D.
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We conjecture that the estimate (5.40) is valid in

general if the solution (u,v) to (1.1) is smooth enough,

if a 2 2 B0, and if

Iu. - U (0)I Chr~lI d
<a120N V (0)) X> W0, x8 e J-.7)

Next, consider the system

ut + v = f 1 (x), (x,t) e [0,llx(0,T],

vt+ u X+ vx ()

(5.47)

v(0,t) - go(t), v(l,t) - gl(t), t e [0,T],

u(x,O) = u0 (x), v(xO) = VOWx, x e [0,11.

Let the space 7)?= k(rI6) where s is a uniform partition

with mesh length h, i.e., h = for N a positive integerN

and xj jh.

Set =u - Q(u,v) as before. Let (U,V) be the

solution of scheme (1.6) for (5.47) with 8=1 and initial

conditions

(5.48) V(O) =1(v 0) 0(0) =Q(u 0,v).

Let =71(2,6). It can be shown that if (u,v) is a

smooth solution to (5.47), then there exists a constant C9

such that
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(5.49) 1(n,11 + Ini 1I _ C9  h5 / 2

This result can be used in the analysis of Theorem 1 to show

that if (u,v) is a smooth solution to (5.47), then the result

(5.50) h-1 / 2 I1u(t) - U(t) il + I1v(t) - V(t) i < Ch2 ,

t e [0,T,

can be proven. The estimate (5.50) cannot be improved since it can be

proven by techniques similar to those used in [3] that the estimate at
t = 0,

h- 1/ 2  Ilu 0  _- (u0,v0)11 + 11y0  - R(v0) < Ch2

cannot be improved.

It can also be shown that if * = '2(4,6) and if the

initial conditions are determined by (5.48), then the estimate

(1.9) cannot be improved.
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